
Can Atomic Step Decomposition Enhance the Self-structured Reasoning of
Multimodal Large Models?

Kun Xiang1*, Zhili Liu2∗, Zihao Jiang3∗, Yunshuang Nie1, Kaixin Cai1, Yiyang Yin1, Runhui Huang4,
Haoxiang Fan1, Hanhui Li1, Weiran Huang3, Yihan Zeng5, Yu-Jie Yuan5, Jianhua Han5,

Lanqing Hong5, Hang Xu5, Xiaodan Liang1†

1 Sun Yat-sen University 2 Hong Kong University of Science and Technology
3 Shanghai Jiaotong University 4 University of Hong Kong 5 Huawei Noah’s Ark Lab

Abstract

In this paper, we address the challenging task of multi-
modal mathematical reasoning by incorporating the abil-
ity of ”slow thinking” into multimodal large language
models (MLLMs). Our core idea is that different lev-
els of reasoning abilities can be combined dynamically to
tackle questions with different complexity. To this end, we
propose a paradigm of Self-structured Chain of Thought
(SCoT), which is composed of minimal semantic atomic
steps. Different from existing methods that rely on struc-
tured templates or free-form paradigms, our method can
not only generate cognitive CoT structures for various com-
plex tasks but also mitigates the phenomenon of overthink-
ing. To introduce structured reasoning capabilities into vi-
sual understanding models, we further design a novel Atom-
Think framework with four key modules, including (i) a
data engine to generate high-quality multimodal reasoning
paths; (ii) a supervised fine-tuning process with serialized
inference data; (iii) a policy-guided multi-turn inference
method; and (iv) an atomic capability metric to evaluate
the single step utilization rate. We conduct extensive exper-
iments to show that the proposed AtomThink significantly
improves the performance of baseline MLLMs, achieving
more than 10% average accuracy gains on MathVista and
MathVerse. Compared to state-of-the-art structured CoT
approaches, our method not only achieves higher accuracy
but also improves data utilization by 5 times and boosts in-
ference efficiency by 85.3%. Our code is now public avail-
able in https://github.com/Quinn777/AtomThink.

1. Introduction
Chain-of-Thought (CoT) reasoning [42] has provided a
novel scheme for Large Language Models (LLMs) to tackle
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complex reasoning tasks. By utilizing a small number of
specially designed instructions, CoT enables LLMs to gen-
erate unstructured reasoning steps to enhance their perfor-
mance on complex tasks. Moreover, the introduction of
OpenAI’s o1 [30] then marks a substantial advancement in
the ability of artificial intelligence systems to perform high-
level reasoning. Unlike traditional models, o1 excels in
solving complex problems by utilizing extended reasoning
chains and adopting test-time scaling, i.e., “slow thinking”.

More recently, numerous studies have ventured to hy-
pothesize about their reasoning paradigms [11, 32, 37, 45].
Certain endeavors, such as LLaVA-CoT [43] and LlamaV-
o1 [36], have posited structured methodologies employing
fixed modules to drive reasoning. However, these methods
require manually designed thinking templates, which lim-
its the diversity of their reasoning behaviors in multimodal
complex problems. In contrast to structured approaches,
the advent of DeepSeek-R1 [12] has redirected attention to-
wards unstructured reasoning. While unstructured chains
of thought more closely mirror human cognitive patterns
and exhibit superior generalization capabilities, recent stud-
ies [7, 41] have found that such slow-thinking models ex-
hibit low efficiency in token utilization and demonstrate
overthinking behavior when addressing simple problems.
Example in Figure 1 illustrates the challenges faced by both
structured and unstructured CoTs. Therefore, we propose
two clarifications: 1) Different types of problems may re-
quire distinct reasoning capabilities; 2) The complexity
of reasoning should align with the difficulty of the prob-
lem.

To dynamically generate appropriate reasoning struc-
tures for problems with diverse complexity, we introduce
a novel paradigm of Self-structured Chain-of-Thought
(SCoT), which decomposes reasoning processes into min-
imal semantic atomic steps. To activate the model’s self-
structured reasoning abilities in multimodal tasks, we fur-
ther develop a full-process slow-thinking framework called
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Figure 1. Comparison with structured and unstructured reasoning models. We are capable of autonomously generating dynamic structures
and lengths based on the type of problem. For text-dominant questions as shown on the left, we bypass image caption and directly extracted
information from the question stem. For the low-difficulty problem on the right, we use fewer tokens compared to o1-like model.

AtomThink. It comprises four key components, including
a data engine and methods for atomic fine-tuning, policy
search and atomic capability evaluation. To begin with, a
data annotation engine with novel prompting and bad-case
filtering strategies is used to create a novel multimodal long
CoT dataset. We propose a dataset called AMATH, in-
cluding 20k high-level mathematical problems with 124k
atomic-granularity step annotations. Secondly, our atomic
step finetuning strategy applies step-level masking to the
training set, forcing our models to learn individual inference
steps. During the inference phase, the model is not only ca-
pable of spontaneously generating CoT in quick mode, but
also can be continuously improved with process supervision
models and step search mechanisms. Lastly, we propose an
atomic capability evaluation metric based on reasoning be-
havior clustering and step utilization calculation to evaluate
the model’s performance in utilizing individual atomic steps
for reasoning.

To validate the effectiveness of our method, we conduct
extensive experiments on public datasets. We improve the
accuracy of baseline on MathVista, MathVerse and Math-
Vision by 10.9%, 10.2% and 7.2%, respectively. Fur-
thermore, our model achieves data utilization at 500% of
LLaVA-CoT while delivering superior performance, and
improves inference efficiency by more than 80%. Aiming
to advance the development of multimodal high-level rea-
soning, we also share extended analysis in diverse reasoning
ability required by visual understanding models.

In summary, our primary contributions are as follows:
• We introduce the Self-structured Chain-of-Thought to de-

compose the reasoning process into atomic steps. It elim-
inates the need for constructing structured thought tem-

plates and achieves significant improvements in both data
utilization and inference efficiency.

• A comprehensive framework including modules for data
annotation, atomic fine-tuning, multi-turn inference and
capability evaluation, is designed to improve the reason-
ing ability of MLLMs.

• We validated the effectiveness of our approach on three
high-level reasoning benchmarks and across various
scales of MLLMs. Additionally, we present an analy-
sis of the distribution of comprehension capabilities in
MLLMs.

2. Related Work
Chain of Thought in Multimodal Reasoning Tasks
Complex reasoning tasks such as mathematical computa-
tion have long been challenging for MLLMs [21, 46]. Some
prior work has approached this issue from the perspec-
tive of prompt engineering, encouraging models to generate
CoT, which is widely believed to enhance reasoning abil-
ities [40, 42]. They carefully modify the input distribu-
tion to generate unstructured reasoning path without fine-
tuning parameters. Recently, OpenAI o1 and DeepSeek
R1 have demonstrated the scalability of unstructured CoT
by guiding models to autonomously learn reasoning pat-
terns through Reinforcement Learning. However, reasoning
models still suffer from issues of overthinking and exces-
sive computational consumption. Other studies have guided
multimodal models to generate structured CoT by providing
manually designed templates [36, 43]. Although these mod-
els incorporate visual semantic information into the reason-
ing process, their fixed steps constrain the diversity of rea-
soning actions, limiting their generalization ability on com-



plex problems.

Long CoT Annotation for Multimodal Data The intro-
duction of slow thinking relies heavily on the availability
of high-quality step-level annotations. Lightman et al. [17]
constructed a process supervision dataset composed of ex-
tensive human annotations, which has been widely used
for mathematical reasoning. Recent advancements have fo-
cused on automating the data acquisition process, allowing
models to generate their own CoTs. Techniques like Quiet-
STaR [48] have demonstrated how self-generated reasoning
can enhance model performance without requiring manual
labels. Moreover, some methods based on Monte Carlo es-
timation have automated the process of data collection, but
they also introduce additional computational cost [26, 39].
In multimodal domain, MAVIS [50], a dataset consisting of
834k visual math problems annotated with short CoT, has
been proposed. Other studies have distilled reasoning pro-
cesses from short answers [51]. However, these machine-
generated annotations are often too brief and challenging to
segment semantically.

3. Method
We present the details of AtomThink for promoting
MLLMs in reasoning with self-structured CoT in this sec-
tion. As shown in Figure 2, AtomThink consists of four key
components, including a self-structured reasoning mecha-
nism (Sec. 3.1), a data engine (Sec. 3.2), a atomic step fine-
tuning process (Sec. 3.3) and an atomic capability evalua-
tion (Sec. 3.4).

3.1. Self-structured Chain-of-Thought
To enable MLLMs to adaptively generate diverse reasoning
paths in response to varying problems, akin to human cogni-
tion, we have proposed an inference method based on Self-
structured Chain-of-Thought (SCoT). In contrast to struc-
tured methodologies, our approach does not constrain the
model to a fixed template of thought or a predetermined se-
quence of reasoning steps. Instead, it empowers the model
to autonomously seek out the most appropriate reasoning
behaviors during the inference process.

Multi-round Atomic Step Generation We commence
by defining the minimal predictive action with semantic
consistency as an Atomic Step, which may constitute a
single sentence or a combination thereof. Utilizing atomic
steps as fundamental building blocks, we propose a multi-
round prediction method to iteratively self-generate thought
chains with dynamic structures. During the reasoning pro-
cess, we prompt the model to predict only one minimal
atomic step at a time, thereby focusing on the quality of
each atomic step. Subsequently, the current prediction is

appended to the historical reasoning steps and provided as
contextual input for the next prediction cycle. Our reason-
ing template with SCoT is shown in the Appendix Figure 9.

Due to the constraints of model size, we find that current
MLLMs exhibit anomalies like reasoning stagnation and
generating hallucinated content. Therefore, we use the fol-
lowing methods for anomaly detection and thought restart:
• Rule-based Filter. We employ Jaccard similarity to

quantify intra- and inter-step semantic repetition, thereby
mitigating thought blockages and looping phenomena.
Additionally, we define a max length parameter to con-
trol the maximum length of atomic steps.

• Temperature Accumulation. Upon detection of an
anomaly, we will perform a single-step inference anew to
replace the erroneous atomic step. To enhance diversity
of outcomes, we incrementally increase the temperature
with each error to simulate the divergent thinking charac-
teristic of human cognition.

Policy Search with Process Reward Model Given that
the model spontaneously segments atomic steps during rea-
soning, a natural consideration is the introduction of a pro-
cess reward model (PRM) to further expand the search
space for predictive actions. As there are many search
strategies to generate candidate actions, we categorize the
existing strategies into path-wise searching and step-wise
searching:
• Path-wise Search. 1) Majority voting combines multiple

reasoning paths by selecting the most frequent outcome
across them. 2) Best-of-N generates C candidate rollouts
simultaneously and selects the solution with the highest
score. The score can be calculated by aggregating the
overall value of the entire path.

• Step-wise Search. 1) Greedy algorithm focuses on mak-
ing the locally optimal choice at each step of the reason-
ing process. 2) Beam search explores multiple branches
at each step and maintains a fixed number of top candi-
dates for each stage of reasoning. It balances between ex-
ploring different paths and exploiting the most promising
ones.
In our principal experiments, we employed a step-wise

beam search to extend the test-time. The Appendix A.2 and
Table 9 provides a detailed description and comparative ex-
periments of different policy search methods.

3.2. Data Engine
Guiding MLLMs toward deep reasoning requires a substan-
tial amount of high-quality CoT data. However, in the field
of visual mathematics, the scarcity of publicly available
datasets presents a considerable challenge. To overcome
this, we develop an automated data engine capable of gen-
erating step-by-step long CoTs, resulting in our own atomic
multimodal dataset, dubbed AMATH. Specifically, our data
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Figure 2. The overview of AtomThink framework. We annotate and filter the open-source data with long CoT to generate atomic steps
for fine-tuning and PRM training. During inference, step-wise or path-wise searching strategies can be applied to find optimal policies.
Finally, the behavior distribution of GPT-4o is obtained through clustering with Kimi1.5, and an outcome-based method is employed for
atomic step utilization evaluation.

Source AMATH-Metadata AMATH-SFT

CLEVR 2056 11.9K
Geometry3K 1224 9.3K
MAVIS 1685 11.4K
TabMWP 2643 16.3K
GeomVerse 1347 9.9K
MathV360K 5632 31.6K
GeoQA+ 2222 15.5K
IconQA 3199 18.1K

Total 20008 124K

Table 1. Data composition of our AMATH. 20K VQA samples are
applied to generate 124K SFT data with intermediate atomic steps.

Data GPT Score Avg. Length
PRM800k 84.1 1245.4

Direct 1.5 3.6
Vanilla CoT 79.6 670.5

AMATH(Ours) 89.4 849.8

Table 2. Comparison of different data styles. AMATH achieves
the highest GPT-4o preference score and generates longer content
than vanilla CoT.

engine introduces a dynamic prompting strategy and short
CoT augmentation strategy to produce multi-step reason-
ing paths. Subsequently, we propose a difficulty scoring
mechanism coupled with a secondary review strategy to sift
through and filter out erroneous instances.

Multimodal CoT Generation. For long CoT generation,
we propose two prompt-based methods:
• Dynamic Prompting. Inspired by recent research [15],

we propose a dynamic prompt strategy for generating
atomic inference steps. Specifically, our strategy drives a
LLM to iteratively construct state-reasoning paths. Each
path node represents a reasoning step and encompasses
the previous stage, the current state, and a possible ac-
tion. The possible action includes continuing reasoning,
verifying, and drawing conclusion, which is determined
by the LLM itself. The prompt is shown in the Appendix.

• Short CoT Augmentation. To fully leverage existing
short CoT annotations of VQA datasets, we also employ
an MLLM to atomize and augment these annotations.
This approach allows us to semantically segment an orig-
inal reasoning process into multiple discrete steps, and
focus on solving a single atomic problem at each stage of
the reasoning process.

Bad Case Filtering. Due to the prevalence of substantial
noise within the publicly available datasets, we first employ
a difficulty scoring system to filter the questions. Subse-
quently, a LLM is used for a secondary review to eliminate
erroneous CoTs.
• Difficulty Scoring. To quantify the difficulty of ques-

tions, we employ Qwen2-VL-7B to sample N candidates
for each question, using the win rate of N candidates as
difficulty level of the question (N = 10 in our paper). To
enhance the efficiency of training, we have removed most
questions with a difficulty level of 0.



• Secondary Review. Upon the generation of CoT, we uti-
lize GPT-4o to conduct secondary review, with a partic-
ular focus on the accuracy of atomic steps and the cor-
rectness of final answers. Furthermore, we engage two
professional annotators to perform a sampling inspection
of our dataset.

AMATH Dataset. We sample multimodal reasoning
data from CLEVR [13], Geometry3K [23], MAVIS
[50], TabMWP [22], GeomVerse [14], Mathv360k [34],
GeoQA+ [5] and IconQA [24]. For GeomVerse and
MAVIS, we conduct short CoT augmentation, while the rest
are generated by dynamic prompts to produce multi-step
reasoning. Table 1 illustrates the distribution of our data. In
Table 2, we also evaluate the quality in a subset of 500 AM-
ATH samples with GPT-4o scoring. We have illustrated the
generation and filtration examples of our dataset in Fig. 3.

3.3. Atomic Step Fine-Tuning
To fully exploit MLLMs for addressing multi-modal mathe-
matical problems, we conduct fine-tuning with atomic step-
wise reasoning. We have dissected CoTs from the metadata
of AMATH into atomic steps and subsequently employed
serialized masking to incrementally incorporate these into
the historical reasoning steps, thereby generating multiple
training samples (denoted as AMATH-SFT) for supervised
instruction fine-tuning.

3.4. Atomic Capability Evaluation
Similar to human problem-solving processes, a SCoT may
involve multiple reasoning abilities. However, traditional
CoT methods do not focus on the ability to follow individ-
ual reasoning step or provide fine-grained analyses of the
underlying abilities. To address this gap, we have developed
an atomic capability evaluation strategy, offering a new an-
alytical perspective for reasoning.

Our evaluation method aims to assess the mathemati-
cal capabilities of a target model from various perspectives,
such as understanding, operations, and certifications. To
this end, we first construct a canonical set of capabilities.
As shown in Figure 6, we collect the behavior distribution
of GPT-4o on AMATH dataset and use Kimi-1.5 to perform
clustering, yielding clusters that each of them represents a
certain ability utilized by high-level intelligent models in
solving mathematical problems. We consider each cluster
as a set and let Set(a) denote the cluster of an ability a.

We initially posit that models with superior atomic rea-
soning capabilities are more adept at leveraging recent con-
textual steps to further excavate answers. Hence, we can
quantify a certain reasoning ability of a model based on its
average probability of reaching a correct answer with its
rollouts sampled from the corresponding ability set. Specif-
ically, assume a question has n historical reasoning steps

S = {si|i = 1, ..., n)}. We define the step utilization rate
u(S) as the probability of reaching an answer by continuing
to reason based on S averaging on M sampled rollouts:

u(S) =

∑M
m=1Jrm is correctK

M
, (1)

where rm is the m-th rollout. Subsequently, we calculate
the utilization rates of different historical steps and map the
corresponding S back to the set of atomic capabilities. We
compute the average utilization rate for each category in the
ability set to represent the model’s atomic reasoning capa-
bility, which can be represented as follows,

Score(a) =
1

|Set(a)|
∑

Sk∈Set(a)

u(Sk). (2)

In our experiments, we selected 160 samples from an out-
of-distribution mathematical dataset (R1V-Stratos [47]), to
construct a test set for atomic capability evaluation.

4. Experiment
4.1. Setup
Baselines. Our experiments utilize two open-source
MLLMs, including LLaVA1.5-7B [20] and Llama3.2-11B-
Vision [27]. With a subset of 100K multimodal question-
answer pairs sampled from LLaVA-665K [20], we post-
training full parameters of their language models, projec-
tors and vision encoder as baselines. For our AtomThink
models, the AMATH-SFT dataset introduced in Section 3.2,
is incorporated to introduce atomic reasoning capabilities.
We use a learning rate of 2e-6 and a batch size of 128 to
fine-tune for one epoch. We select 12 cutting-edge MLLMs
for comparison, including Claude 3.5 Sonnet [1], OpenAI’s
o1 [30], 4o [28], 4v [29], as well as LLava-NeXT-34B [19],
InternLM-XComposer2 [50], Qwen-VL-Plus [2], LLaVA-
1.5-13B [20], GLLaVA-7B [10], MAVIS-7B [50], LlamaV-
o1-11B [36] and LLaVA-CoT-11B [43].

Evaluation Setting. We evaluated the performance of our
method on MathVista [25], a publicly available benchmark
encompassing both general-targeted and mathematics-
targeted (MathVista-M) domains. Additionally, Math-
Verse [52] is introduced to assess the model’s sensitivity
to mathematical graphs. MathVision [38], a benchmark en-
compassing a diverse range of mathematical problem com-
plexities, is also incorporated into the experiments to specif-
ically evaluate the dynamic variations in our atomic steps.
We also introduced Humanity’s Last Exam (HLE) [31], one
of the most challenging benchmark, to assess the model’s
reasoning capabilities under extremely difficult conditions.

Our evaluations include four inference settings, includ-
ing Direct, CoT, SCoT, and SCoT w/ PRM. In the Direct



Figure 3. A case study of our data engine to generate high quality CoT. Red and green characters denote incorrect and correct responses,
respectively. Compared with vanilla CoT generated by GPT-4o, our dynamic prompting strategy exhibits fewer hallucinations in every
atomic steps. Utilizing existing short annotations, we can augment longer paths that encompass more details. Additionally, bad case
filtering is applied to inspect low-quality noisy data within the automated pipeline.

Model Inference MathVista-M MathVista MathVerse MathVision HLE

Random Choice - - 17.9 12.4 7.2 -
Human - - 70.9 - 68.8 -

OpenAI o1 CoT - 73.9 - - 8.8
Claude 3.5 Sonnet CoT - 67.7 - 38.0 4.8

GPT-4o CoT - 63.8 - - 3.1
GPT-4V CoT - 49.9 54.4 24.0 -

LLaVA-NeXT-34B Direct - 46.5 23.8 - -
InternLM-XComposer2 Direct - 57.6 16.5 14.5 -

Qwen-VL-Plus Direct - 43.3 11.8 10.7 -
LLaVA-1.5-13B Direct - 27.6 15.6 11.2 -

G-LLaVA-7B Direct - 53.4 16.6 - -
MAVIS-7B Direct - 29.1 27.5 19.2 -

LLamaV-o1-11B CoT - 54.4 - - -
LLaVA-CoT-11B CoT - 54.8 - - -

LLaVA1.5-7B* Direct 23.3 27.9 10.0 9.3 4.2
AtomThink-LLaVA SCoT 26.5 (+3.2) 29.2 (+1.3) 14.4 (+4.4) 12.7 (+3.4) 5.7 (+1.5)
AtomThink-LLaVA SCoT w/ PRM 31.1 (+7.8) 32.1 (+4.2) 14.6 (+4.6) 12.3 (+3.0) 4.4 (+0.2)

Llama3.2-Vision-11B* Direct 44.1 47.5 23.3 13.8 4.0
AtomThink-LlamaV SCoT 56.9 (+12.8) 57.1 (+9.6) 31.5 (+8.2) 18.2 (+4.4) 5.4 (+1.4)
AtomThink-LlamaV SCoT w/ PRM 59.1 (+15.0) 58.4 (+10.9) 33.5 (+10.2) 21.0 (+7.2) 4.5 (+0.5)

Table 3. Comparison of accuracy with state-of-the-art models on four benchmarks. Our AtomThink achieves consistent improvement
across models of varying scales and surpasses baselines on all four benchmarks. Specially, AtomThink-LlamaV, with 11B parameters,
surpasses GPT-4V by 8.5% on MathVista. The baseline models (*) are post-trained by LLaVA100K VQA.

setting, we prompt the model to generate a concise final
answer. In CoT, the model is instructed to answer the ques-
tion through step-by-step reasoning. For the Direct and CoT
evaluations, we use prompts from lmms-eval [16, 49]. Our
AtomThink-models support two additional settings: SCoT
and SCoT w/ PRM. In SCoT, our models follow a single,
atomic reasoning path based purely on their learned poli-
cies, without employing any supplementary search strate-
gies. In SCoT w/ PRM, enhanced by Qwen2.5-Math-PRM-

7B [53], we utilize step-wise beam search with a window of
3 and candidate number of 2. During the search process, the
temperature for each step is initialized at 0 and incremented
by 0.5 with each candidate sampling to enhance diversity.

4.2. Main Results

In Table 3, our AtomThink framework is applied to train
LLaVA1.5-8B and Llama3.2-Vision-11B, yielding consis-
tent performance improvements over the original models.



Method LLaVA-CoT AtomThink-LlamaV AtomThink w/ PRM

Accuracy 54.8 57.1 (+2.3) 58.4 (+3.6)
Dataset Scale 100k 20k (-80%) 20k (-80%)
Tokens 1322.2 161.5 (-87.8%) 734.7 (-44.4%)
Inference Time 57.2 8.4 (-85.3%) 38.1 (-33.4%)

Table 4. Comparison with LLaVA-CoT. We not only improve inference accuracy by 3.6%, but also
decrease the data and test-time resource requirement.

Samples Accuracy

0 9.28
10k 9.67
30k 9.33
60k 11.33
90k 8.97
124k 12.45

Table 5. AtomThink-
LLaVA performance im-
provement of MathVision-
mini with dataset scaling.

Figure 4. Comparison of the average response length in
AtomThink-LlamaV over benchmarks with different complexity.
(a) As tasks become more challenging, the model proactively uti-
lizes more tokens. (b) The proportion of longer CoT containing a
greater number of atomic steps increases in outputs.

Figure 5. MathVision-mini accuracy in diverse difficulty level sub-
sets. A higher level signifies increased difficulty. The performance
decline margin of AtomThink modes are more narrow (-20.4% v.s.
-30.7% in LLaVA1.5, -30% v.s. -43.0% in LlamaV).

With Self-structured CoT, the accuracy of AtomThink-
LLaVA can be enhanced by 4.4% and 3.4% in MathVerse
and MathVision, respectively. In a larger vision under-
standing model, AtomThink-LlamaV gains a higher im-
provement by 9.6% and 8.2%. When combined with step-
wise beam search and process reward model, AtomThink-
LlamaV achieves a new state-of-the-art on MathVista, sur-
passing GPT-4V and narrowing the gap between MLLMs
and human performance. Furthermore, in the more chal-

Candidate Ouput Tokens Accuracy

0 2.3 13.9
1 231.9 18
2 518.6 18.3
3 822.3 23.3

Table 6. AtomThink-LlamaV performance improvement of
MathVision-mini with test-time scaling. We employ Best-of-N
and PRM to select the optimal step among N candidates.

Calculation (13.86%) 

Knowledge Introduction (8.00%) 

Image Description (15.29%) 

Data Extraction (10.87%) 

Logical Deduction (10.42%) 

Equation Formulation (6.48%) 

Fact Verification (5.68%) 

Variable Definition (5.27%) 

Causal Reasoning (2.90%) 

Spatial Reasoning (2.30%) 

Pattern Recognition (1.50%) 

Proportional Reasoning (0.86%) 

Critical Thinking (0.43%) 

Process Analysis (0.15%) 

Hypothesis Testing (0.02%) 

Ours
Decision Making (15.97%) 

Figure 6. Atomic step distribution of AtomThink-LlamaV in R1V-
Stratos-160 testset. Compared with the structured method, our
model is capable of performing a variety of reasoning behaviors.

lenging and complex HLE task, despite being unable to
answer the majority of questions, our two models still
achieved modest improvements (1.5% and 1.4%). Overall,
we increase the average performance of 7B and 11B models
by 4% and 8.8%, respectively. These results demonstrate
the framework’s strong generalization capability and prac-
tical usability.
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Figure 7. The evaluation of utilization efficiency across different
atomic capabilities. Lower scores in initial stages of CoT (e.g.
Data Extraction) indicate the presence of error accumulation.

4.3. Scaling Reasoning According to Difficulty

To assess the variation in the length of unstructured CoT,
we present the output distribution of AtomThink-LlamaV
across four benchmarks in Fig. 4. The ascending error rates
indicate a sequential increase in benchmark difficulty. In
subplot (a), without human intervention, the model employs
a greater number of atomic steps to address more complex
problems. Surprisingly, despite the average token count of
AMATH-SFT being only 148.9, the outputs of our model
on different test sets are progressively increasing. This sug-
gests that the model is not merely fitting the training data but
is instead exhibiting an emergent ability to autonomously
explore the depth of reasoning, potentially representing the
“Aha Moment” we anticipate in visual reasoning models.
Moreover, although accuracy decreases with increasing dif-
ficulty level, Fig. 5 demonstrates that the decline margin is
reduced when AtomThink is applied.

4.4. Autonomous Generation of Diverse Structures

We cluster the reasoning behaviors of GPT-4o into 16 cat-
egories and collect the distribution of atomic steps pro-
duced by AtomThink on the Stratos160 test set. The results
in Fig. 6 demonstrate that, compared to structured output
(LLaVA-CoT), our SCoT exhibits a more diverse range of
reasoning structures. Among all categories, the higher pro-
portion of Image Description (15.29%) and Data Extraction
(10.87%) underscores the importance of perceptual capa-
bilities. With the enhanced visual understanding abilities,
the model also displays specific behaviors such as Causal
Reasoning (2.9%) and Spatial Reasoning (2.3%).

4.5. Data Utilization and Reasoning Efficiency
In Table 4, we present a comprehensive comparison with
state-of-the-art methods in terms of accuracy, dataset scale,
output token count, and inference time. By utilizing only
one-fifth of VQA samples, we achieve a 3.6% improvement
on MathVista. Furthermore, due to our ability to provide
concise responses to simpler questions, we reduce inference
time by 85.3% and 33.4% per sample when not using search
and employing PRM for strategic search, respectively.

4.6. Scaling Law in Data and Test-time
Previous research has found that scaling up data and test-
time computations can enhance the reasoning in language
models. Our result also discovers that this scaling law per-
sists in multimodal models. Fig. 5 shows that increasing
data scale generally promotes performance. By employing
a step-wise Best-of-N strategy, we linearly increased rea-
soning time, with each additional candidate improving ac-
curacy by an average of 3.1%.

4.7. Further Analysis
What Kind of Capabilities Do MLLM Need in Reason-
ing? Building upon the set of atomic capabilities illus-
trated in Fig. 6, we calculated our model’s utilization rate
for each category of steps using Eq. ( 2). Results in Fig. 7
reveal that as the given historical steps approach the be-
ginning of the reasoning chain (e.g. Image Description
and Data Extraction), prediction error rate continuously in-
creases. This error accumulation effect prompts us to focus
on the quality of reasoning in initial stages. In future work,
we can mitigate the rate of error accumulation by adjusting
data ratios and designing sampling strategies.

What Kind of Information Do PRM Focus on? In Ta-
ble 3, we find that even the reasoning process heavily re-
lies on visual dominant inputs, the highest performance is
achieved by using a language PRM. Meanwhile, we have
tried to train a vision-language PRM of text and visual
modalities data. Unfortunately, the results indicate that the
language reward model achieves better performance than
the MLLM. This suggests that the current PRM paradigm
may not be adept at utilizing visual information. Exploring
how to leverage multimodal features to correct the reason-
ing process will be a direction we need to investigate.

5. Conclusion
To mitigate overthinking and structured output, we have
proposed a self-structured chain of thought method. It
ensures reasoning efficiency while adaptively generating
a variety of atomic steps. Subsequently, we introduced
AtomThink, a comprehensive deep reasoning framework
that encompasses data engineering, model training, infer-
ence, and evaluation. The experimental results demon-



strate that our method consistently enhances the model’s
diverse behaviors during the problem-solving process, lead-
ing to improved reasoning performance across various mul-
timodal benchmarks. This work paves the way for de-
veloping generalized slow-thinking models and provides
novel insights for understanding multi-modal reasoning pat-
terns.
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Supplementary Material

A. Implementation Details
A.1. Policy Models
In this section, we provide more implementation details
for baseline models and our framework. we post-train
them using AMATH-SFT and a sub-sampled dataset of
LLaVA665K, containing 100k samples. During this pro-
cess, the weights of LLM, projector and vision encoder are
fully fine-tuned. Specifically, we utilize the Llama-factory
framework to train the models and the hyperparameters are
listed in Table7.

Parameter LLaVA1.5-7B Llama3.2-V-11B

Learning Rate 2e-6 2e-6
Epochs 1 1
Batch Size 128 128
Context Length 4096 4096
Seed 42 42
Precision FP16 BF16
GPU 32 NVIDIA V100 8 NVIDIA A800
FSDP True True
DeepSpeed Zero3 Zero3

Table 7. Comparison of Parameters for post-training LLaVA1.5-
7B and Llama-3.2-Vision-11B.

A.2. Atomic Search with PRM.
With the fine-tuned MLLM capable of atomic step rea-
soning, we apply well-trained PRM, Qwen2.5-Math-PRM-
7B [53], for providing feedback. As there are many search
strategies to generate candidate actions, we categorize the
existing strategies into path-wise searching and step-wise
searching and explore them in our AtomThink framework.
Unlike traditional token-based search strategies, we sample
candidates using atomic steps as the fundamental unit.

Path-wise Search. In path-wise searching, we build upon
prior work [35, 37] by parallel sampling multiple paths and
aggregating scores to find optimal solutions. We investigate
the following two strategies:
• Majority Voting: It combines multiple reasoning paths

by selecting the most frequent outcome across them. It
assumes that the consensus across different paths is more
likely to lead to the correct answer.

• Best-of-N: Given a generative MLLM, the best-of-N
sampling method generates C candidate rollouts simul-

taneously and selects the solution with the highest score.
The evaluation of candidate reasoning processes is de-
termined by the PRM, which employs three aggregation
methods to map the dense scores to the overall value of
the entire path: 1) The worst action: Compare the worst
action among all candidate rollouts. It penalizes solutions
with any weak action and is used to search a reasoning
that is sensitive to errors. 2) The last action: The score
is derived from the prediction of the final answer in in-
ference. 3) Average score: It is calculated by averaging
the rewards of all the actions in a chain. The explainabil-
ity and consistency of intermediate reasoning are empha-
sized here as important as the outcome.

Step-wise Search. Searching strategies of this type start
with an initial path and incrementally expand the sampling
space for each atomic action. Beam search and greedy
strategies are applied to prune branches with low quality.
• Greedy Algorithm: It focuses on making the locally op-

timal choice at each step of the reasoning process. It se-
lects the best immediate action (step) based on the current
state, without considering future consequences.

• Beam Search: It explores multiple branches at each ac-
tion and maintains a fixed number of top candidates for
each stage of reasoning. It balances between exploring
different paths and exploiting the most promising ones.

B. Attempts on training a R1-like MLLM
Recently, the introduction of DeepSeek-R1 [12] has demon-
strated that reinforcement learning can effectively enhance
autonomous reasoning capabilities. GRPO (Generalized
Reward Prediction Optimization) as it’s main training strat-
egy, focuses on optimizing the prediction of rewards in
complex environments to improve decision-making and
policy learning. Several outstanding open-source reposito-
ries have explored the application of GRPO in the visual
domain [3, 47].

With the setup of R1V [47], we also attempt to use
GRPO to address complex reasoning problems. To facilitate
a fair comparison, we sample a 3K subset from AMATH-
metadata, equivalent in scale to R1V-CLEVR, and con-
ducted experiments on Qwen2-VL-2B. The reward func-
tion is divided into format rewards and accuracy rewards.
The Figure 8 illustrates the changes in candidate length and
accuracy rewards during the training process. Due to the
use of more diverse and complex training data, we gener-
ate longer CoT completion length and lead to higher error



Figure 8. Comparison with a DeepSeek-R1 like framework using
reinforcement learning. A 3k subset of AMATH is sampled for
fair comparison.

rates. Although there is an initial improvement in accuracy
rewards during the early stages of AMATH3K training, it
plateaues around 30%. Additionally, neither set of exper-
iments exhibit the CoT growth phenomenon observed in
R1. We think that pure reinforcement learning methods face
greater challenges in multimodal tasks, potentially relate to
task difficulty, model foundational capabilities and reward
settings.

C. Prompts Design

In this section, we present the prompt used in self-structured
CoT 9 and multimodal CoT annotation engine. Prompts in
data engine include: long CoT generation (Figure 10), short
CoT augmentation (Figure 11), data filtering (Figure 12),
and quality scoring (Figure 13).

D. Cases of AtomThink output

In Figure 15 and Figure 16, we present the SCoT outputs
generated by Llama3.2-Vision-11B models trained with
AtomThink. Compared to original models, we are able
to produce a dynamic thinking process similar to OpenAI-
o1 [30]. The models tend to use image features to de-
compose challenging mathematical problems into multiple
atomic sub-questions, which are then solved step by step. It
is capable of generating responses of varying lengths based
on the difficulty of problem and exhibits diverse reasoning
behaviors (including Fact Verification, Spatial Reasoning
and Logical Deduction). The results demonstrate that our
outputs are more accurate in recognizing visual information
and reduce reasoning hallucinations.

E. Cases of AtomMATH Dataset
To further illustrate the AMATH dataset we released, we
randomly select several examples. Figure 17 and Figure 18
show two case from AMATH-SFT.

F. Early experiments
In this section, we provide more early exploration in SFT
based slow thinking model. We use LLaVA-Llama3 [20]
and EMOVA-8B [6] to perform experiments.

F.1. Implementation Details
Basic Model. For LLaVA-Llama3 [20], we choose the
pre-trained ViT-L/14 of CLIP [33] as the vision encoder
and Llama3-8B [9] as our LLM. To align visual features
with the LLM, we incorporates a Multi-Layer Perceptron
(MLP) as a projector between the visual encoder and the
language model. For EMOVA-8B [6], we use the original
setting of EMOVA that uses InternViT-6B [8] and LLaMA-
3.1-8B [9]. The C-Abstractor [4] with two ResBlocks is
adopted as the projector.

The training of LLaVA-Llama-3-8B follows a struc-
tured two-stage process [20]. In our experiment, we only
load its weights from pre-training stage and deploy su-
pervised fine-tuning. During SFT, the training data com-
prises the LLaVA-Instruct-665k, a 46k subset of PRM800k
and our AMATH-SFT dataset. The weights of language
model and MLP projector are unfreezed. The model un-
dergoes an epoch of training with a reduced learning rate
of 2e-5 and batch size of 128. To create AtomThink-
EMOVA, we post-train EMOVA using AMATH-SFT and a
sub-sampled dataset of EMOVA-SFT-4m, containing 200k
samples. During this process, the weights of the LLM and
the C-Abstractor projector are updated. EMOVA is fine-
tuned for 1 epoch with a batch size of 128 and a learning
rate of 2e-6.

PRM Setting. We initially fine-tuned a large language
model to introduce textual process supervision. We uti-
lize the pre-trained Qwen2.5-Math-7B-Instruct [44] and
Math-psa-7B [37] models as our foundational architectures.
Qwen2.5-Math-7B-Instruct is an open-source large lan-
guage model specifically designed for mathematical reason-
ing tasks. Math-psa-7B is a text-based process supervision
model trained using datasets such as PRM800K [18], Math-
Shepherd [39] and MATH-APS [37]. Low-Rank Adapta-
tion (LoRA) is applied to fine-tune with the following pa-
rameters: rank (r) of 8, alpha scaling factor of 32, dropout
rate of 0.1, and targeting the q and v projectors. Training
is conducted over one epoch with a batch size of 256 and
a learning rate of 1e-5. We sample a 20k-instance training
set from PRM800K and combine it with the AMATH-PRM
dataset, which is derived from multimodal CoT annotations,



<image>
THE GIVEN QUESTION:
{question}
Answer the question using a single word or phrase.

HISTORICAL REASONING STEPS:
{steps}

Your task is to predict the next step of reasoning or calculation based on THE GIVEN
QUESTION and HISTORICAL REASONING STEPS. Ensure your prediction is a single
atomic reasoning step, which should be small and focused. If the historical reasoning
steps have already reached a conclusion, there is no need to predict the next step in
reasoning; simply reply with "To sum up, the final answer is: ...".

AtomThink Prompt

Figure 9. AtomThink template for generating Self-structured CoT. The model takes an image and a question as input, generating an atomic
step at each iteration. These steps are then concatenated into the historical reasoning steps, which are fed into model for the next round of
reasoning.

MathVista MathVerse

Model Inference General Math Total TL TD VI VD VO Total

LLaVA-Llama3-8B Direct 34.1 25.6 29.5 16.0 19.3 16.4 13.1 15.0 15.9
LLaVA w/. Formatted CoT 30.2 22.9 26.3 14.3 18.4 15.7 10.0 7.7 13.2

AtomThink-LLaVA-Llama3 Direct 34.4 27.2 30.5 16.0 19.3 16.2 13.1 15.0 15.9
AtomThink-LLaVA-Llama3 SCoT 36.9 37.0 36.6 22.2 26.6 24.1 20.9 17.9 22.4
AtomThink-LLaVA-Llama3 SCoT w./ PRM 36.5 41.3 39.1 36.1 42.4 30.0 36.8 28.6 34.7

EMOVA-8B-200k Direct 52.4 51.1 51.7 34.4 39.0 33.4 30.1 23.5 32.1
EMOVA w/. Formatted CoT 30.9 31.3 31.1 26.5 36.5 25.3 20.4 19.8 25.7
AtomThink-EMOVA Direct 53.9 52.4 53.1 33.6 39.0 33.8 28.0 24.4 31.8
AtomThink-EMOVA SCoT 48.7 54.4 51.8 36.5 42.4 34.1 32.9 29.7 35.1
AtomThink-EMOVA SCoT w./ PRM 48.9 57.0 53.3 42.1 51.5 39.0 36.7 33.1 40.5

Table 8. Comparison of accuracy on MathVista and MathVerse. Our AtomThink-LLaVA-Llama3 outperforms the baseline in all sub-tasks
across two benchmarks, achieving an average improvement of 14.2%.

to serve as our fine-tuning data. All the samples include
question, historical steps, and current step, with each cur-
rent step being assigned a label of either correct or incorrect.
In line with OpenR’s settings, we designate ”\n\n\n\n\n”
as the step separator and return the conditional probability
of the current step being correct.

F.2. Results

Multimodal Performance Improvement. In Table 8, our
AtomThink framework is applied to train LLaVA-Llama3-
8B and EMOVA-8B, yielding consistent performance im-
provements over the original models. When combined with

PRM, AtomThink-EMOVA achieves a new state-of-the-art
on MathVerse and narrowing the gap between MLLMs and
human performance. On MathVista, it also achieves per-
formance to 53.3%. These results demonstrate the frame-
work’s strong generalization capability. In Figure 19, we
compare AtomThink with the state-of-the-art open-source
inference strategy, g11, which employs dynamic prompt-
ing to make model focus on single step reflection. In GPT-
4o, direct application of g1 for multi-turn reasoning yields
a greater improvement over Chain-of-Thought, particularly
in numeric and geometric tasks. However, due to the re-

1https://github.com/bklieger-groq/g1



<SYSTEM>
You are an expert AI assistant that explains your reasoning step by step. Your task
is to continue your previous conversation and predict the next step in reasoning.
Decide if you need another step or if you're ready to give the final answer. Respond
in JSON format with 'content', and 'next_action' (either 'continue' or 'final_answer')
keys.

1. Ensure your output is a single atomic reasoning step, which should be small and
focused.

2. Ensure that your reasoning incorporates all relevant details from the provided
image.

3. Break down your explanation into clear, concise steps. Use as many reasoning
steps as possible while avoiding unnecessary or redundant information.

4. In your reasoning process, utilize various approaches to explore the answer
comprehensively, ensuring a thorough analysis.

5. Base your reasoning strictly on the information available in the image and prior
context to prevent inaccuracies.

Examples of valid responses:
{examples}

<USER>
{image}
{question}

<ASSISTANT>
I will now think step by step following my instructions.

<ASSISTANT>
```json

{
"content": "Step 1: The image shows …",
"next_action": "continue"

}```

……

<ASSISTANT>
```json

{
"content": "Step N: The final answer is: …",
"next_action": " final_answer"

}```

Dynamic Prompt to Generate Long CoT

Figure 10. Dynamic prompt for long CoT generation. Inspired by previous work, we designed a dynamic prompt template that generates
reasoning steps for each iteration. It effectively identifies the input visual information to generate detailed image captions and fine-grained
atomic steps.



You are an advanced multimodal large language model. Your task is to generate a
Chain of Thought (CoT) reasoning for a question based on a provided image and a
reference answer. Break down your reasoning into clear, logical steps that are easy
to follow.

### Requirements:
1. Construct a logical, step-by-step thought process using information from the

image and the reference answer, along with any relevant external knowledge.
2. Ensure each step builds on the previous one and leads to the final answer.
3. Make necessary **inferences** based on the image content and additional

knowledge (e.g., science, mathematics, geography).
4. In the last step, provide a concise, well-supported answer to the question,

concluding with “Step N: To sum up, the final answer is: xxx.”

---

### Example Format:
[Input]
{input example}

---

[Output]
……

---

### Note: Ensure that your reasoning is **clear, logical, and complete**, with no
omitted steps. This will demonstrate how the answer is derived from both the image
content and the reference answer.

---

[Your Input]

{image}
{question}
{reference answer}

[Your Output]

LLM Data Augmentation Prompt

Figure 11. Prompt for short answer augmentation. Using the current math VQA dataset, which already includes short answers and CoTs,
we apply this template to enhance and generate detail atomic steps.



Model Method MathVista-M MathVista-G MathVerse

EMOVA-200k Direct 51.1 52.4 33.3

AtomThink Direct 52.4 53.9 35.7
Quick Think 54.2 46.7 38.0

w/. Path-wise

Majority Voting 48.8 49.4 39.0
BoN-Last 51.2 46.8 41.3
BoN-Avg 58.7 40.5 38.7
BoN-Min 53.7 53.2 40.0

w/. Step-wise Greedy 46.3 45.6 38.3
Beam Search 57.1 53.2 45.3

Table 9. Ablation study on Path-wise and step-wise search. The re-
sults show that both Best-of-N-Min(BoN-Min) and Beam Search
exhibit consistent performance improvements.

Candidate AtomThink-EMOVA AtomThink-LLaVA

1 38.0 22.5
2 37.5 23.0
3 38.5 31.5
4 41.5 33.5
5 42.5 35.5
6 45.5 36.0

10 45.5 38.0

Table 10. Test-time scaling law of MLLMs. Results suggest that
increasing the number of candidates during inference can enhance
models’ performance on mathematical tasks, aligning with the
finding of test-time scaling laws in language models.

liance on the inherent reasoning capabilities of large-scale
language models, its performance significantly degrades on
smaller models such as EMOVA-8B and LLaVA-Llama3-
8B. In contrast, our AtomThink framework consistently en-
hances the performance of these MLLMs.

Test-time scaling law in multimodal tasks In this sub-
section, we evaluate the impact of inference-time expansion
on experimental outcomes using a 200-sample subset of the
MathVerse dataset. We employ the AtomThink-EMOVA-
8B and AtomThink-LLaVA-8B in Sec. 4 as base models,
maintaining a fixed beam size of 1, and increase the num-
ber of candidates per sampling to extend test time. The
results in Table 10 indicate that, as the number of candi-
dates increases, both models exhibit consistent performance
improvements on multimodal mathematical tasks. Specifi-
cally, AtomThink-EMOVA-8B’s accuracy rises from 38.0%
with a single candidate to 45.5% with 6 candidates, while
AtomThink-LLaVA-8B’s accuracy improves from 22.5% to
36.0% over the same range.

Evaluate CoT Capability with Various Prompts Chain-
of-Thought prompting has been demonstrated to enhance
the performance of large language models by guiding them
to deliberate on their predictions [42]. However, previ-

ous studies have indicated that such benefits emerge pre-
dominantly in models exceeding 100 billion parameters.
In our investigation, we extend this analysis to multi-
modal large language models by employing various widely-
used prompts to induce step-by-step reasoning in the 8B-
parameter LLaVA-Llama3 model. In Table 11, the prompt
”Answer the question using a single word or phrase.” forces
model output directly and achieves the highest accuracy at
18.5%. In contrast, prompts explicitly instructing step-by-
step reasoning, such as ”Let’s think step by step.” results in
lower accuracies of 11.1%. Other prompts that encourage
CoT output also lead to a significant decrease in reasoning
accuracy. These findings suggest that incorporating slow-
thinking capabilities into smaller models presents substan-
tial challenges.

G. Limitations
Due to a lack of computational resources, we did not con-
duct research on larger-scale visual models. Additionally,
although we performed manual sampling and screening dur-
ing data creation, it may not cover all cases and atomic
steps.



Prompt MathVerse200

Answer the question using a single word or phrase. 18.5

Let’s think step by step. 11.0

First perform reasoning, then finally answer the question and 9.5provide the final value at the end in the following format: Answer: xxx.

Answer the following question step by step concisely. 14.5

Given the following problem, reason and give a final answer to the problem. Your response 15.5should end with ”The final answer is [answer]” where [answer] is the response to the problem.

Answer the following question. The last line of your response should be of the following 14.0format: ’Answer: xxx’ where ’xxx’ is the answer. Think step by step before answering.

Table 11. Evaluate the CoT performance of LLaVA-Llama3-8B using different prompts. Results indicate that smaller multimodal large
language models exhibit limited CoT capabilities.



### Instruction: Checking Answer Correctness
Given the question, image, and ground truth solution, follow these steps to
determine if the provided response is correct, including both the reasoning steps and
final answer.

1. Analyze the Question and Image:
- Ensure you understand the question statement and the context provided by

the image.
2. Compare the Provided Answer with Ground Truth:

- Verify that the steps, logic, and reasoning in the provided answer align with
the ground truth solution.

- Check for calculation correctness and factual consistency at every step of
the answer.
3. Evaluate the Final Result:

- Ensure the final answer matches the ground truth both in value and format.
4. Determine Correctness:

- If all steps, logic, calculations, and the final result match the ground truth
exactly, return `True`.

- If there is **any discrepancy** in the process, logic, or result, return `False`.

---

### Example Format:
[Input]
{input example}

---

[Output]
True or False

---

### Note:
Only return True or False based on the correctness evaluation. Do not provide any
additional comments, explanations, or intermediate outputs.

[Your Input]

{image}
{question}
{ground truth}
{response}

[Your Output]

LLM Data Filtering Prompt

Figure 12. Prompt for filtering wrong CoT. Due to the quality gap between the reasoning steps generated by the AI assistant and human
annotations, we employ this template to double-check. It filters out samples with incorrect answers and reasoning processes.



Please evaluate the quality of the Chain-of-Thought (CoT) reasoning provided by the AI
assistant for the given question and answer. Consider the correctness of reasoning,
logical coherence, readability, detailing, and depth of understanding of the problem.
Additionally, evaluate whether the model effectively addresses all parts of the question
and generates accurate intermediate steps leading to the final answer.

Start by explaining your judgment, highlighting strengths or weaknesses in the
reasoning. After your explanation, rate the quality of the CoT reasoning on a scale from
1 to 10, where 1 means significant flaws and 10 indicates a thorough, logical, and well-
structured response. Please explain your reasons for evaluation first, and then end in
the format of "Rating: [[X]]", where X is your score.

[Question]
{question}

[Answer]
{answer}

[Start of Assistant's Chain-of-Thought]
{cot}
[End of Assistant's Chain-of-Thought]

---

[Your output]

Prompt for GPT scoring

LLM Scoring Prompt

Figure 13. Prompt for GPT scoring. We use this template and GPT-4o to quantitatively evaluate the quality of the generated data. The
results show that our AMATH data outperforms human annotations in terms of AI preference scores.



Atomic Ability Clustering

You are a data analysis expert proficient in extracting significant information from large datasets. 
Analyze the provided reasoning step data and extract the most relevant distinct reasoning capability 
labels.

### Requirements:
1. Analyze each reasoning trajectory to identify fine-grained cognitive abilities
2. Consolidate fundamental reasoning competencies into representative labels
3. Prioritize capabilities demonstrating logical inference and problem-solving

### Example Format:
[Input]  
{Reasoning Data}
[Output]
1. Graph Analysis     2. Variable Definition     3. Problem Reformulation     4. ......

### Note: Maintain **concise, specific, and mutually exclusive** labels that comprehensively cover all 
demonstrated capabilities. This taxonomy will inform core reasoning competencies.

Figure 14. Prompt for clustering the reasoning behaviors in GPT-4o.



Figure 15. Case of AtomThink-LlamaV output. Based on the type of problem and information provided, model autonomously explores
diverse reasoning behaviors, e.g. Fact Verification, Spatial Reasoning and Logical Deduction.



Figure 16. Case of AtomThink-LlamaV output. Depending on the difficulty of problem, it generates shorter or longer CoTs without human
supervision.



Meta Sample

Let 𝑓 be twice differentiable function on the interval

− 1 < 𝑥 < 5 with 𝑓 1 = 0 and 𝑓 2 = 3. The graph

of 𝑓′ , the derivative of 𝑓, is shown above. The graph

of 𝑓′ crosses the x-axis at 𝑥 = −0.5 and 𝑥 = 4. Let h

be the function given by ℎ 𝑥 = 𝑓 𝑥 + 1 . Which is

the equation for the line tangent to the graph of ℎ at

𝑥 = 3?

(A) 𝑦 =
5𝑥

12
+

7

4
(B) 𝑦 =

5𝑥

12
+

5

4
(C) 𝑦 =

7𝑥

12
+

7

4

AMATH-SFT

Step 1: We need to find the equation of the tangent line to the graph of the function ℎ 𝑥 = 𝑓 𝑥 + 1 at

𝑥 = 3. We are given that 𝑓 is twice differentiable on the interval −1 < 𝑥 < 5, with 𝑓 1 = 0 and 𝑓 2 =
3. The graph of f', the derivative of f, is provided, and it crosses the x-axis at 𝑥 = −0.5 and 𝑥 = 4.

Step 2: The graph of 𝑓 ′ shows that 𝑓 ′ 2 =
5

3
. This information will be useful for finding the slope of the

tangent line to h at 𝑥 = 3.

Step 3: To find the equation of the tangent line to ℎ 𝑥 at 𝑥 = 3, we need to determine ℎ 3 and ℎ′ 𝑥 .

We start by findingℎ 3 : ℎ 3 = 𝑓 3+ 1 = 𝑓 2 . Given that 𝑓 2 = 3, we haveℎ 3 = 3.

Step 4: Next, we need to find ℎ′ 3 . Using the chain rule, ℎ′ 𝑥 = 𝑓′ 𝑥 + 1 ∙
1

2
𝑥 + 1 −

1
2. Evaluating

this at 𝑥 = 3, we get ℎ′ 3 = 𝑓′ 2 ∙
1

2
4 −

1
2.

Step 5: We know from the graph that 𝑓 ′ 2 =
5

3
. Therefore, ℎ′ 3 =

5

3
×

1

2
4 −

1
2 =

5

3
×

1

2
×

1

2
=

5

3
×

1

4
=

5

12
.

Step 6: The slope of the tangent line to ℎ at 𝑥 = 3 is
5

12
, and the point of tangency is (3, 3). Using the

point-slope form of the equation of a line, 𝑦 − 3 =
5

12
(𝑥 − 3), we can rewrite this as 𝑦 =

5

12
𝑥 + 3−

5

12
∙

3 =
5

12
𝑥 + 3−

5

4
=

5

12
𝑥 +

7

4
. Therefore, the equation of the tangent line is 𝑦 =

5

12
𝑥 +

7

4
.

Step 7: To sum up, the final answer is: A.

Figure 17. Case of AMATH-SFT.



Meta Sample

The tank of liquid in the figure P2.139 accelerates to

the right with the fluid in rigid-body motion. Compute

𝑎𝑥 in 𝑚/𝑠2.

(A) 1.00𝑚/𝑠2 (B) 1.50𝑚/𝑠2 (C) 1.28𝑚/𝑠2

AMATH-SFT

Step 1: The problem involves determining the acceleration of a tank of liquid in rigid-body motion based 

on the given dimensions and the fluid surface slope.

Step 2: The image shows a tank accelerating to the right with a liquid inside. The liquid surface is inclined, 

with the left side at 28 cm and the right side at 15 cm. The horizontal distance between these points is 100 

cm.

Step 3: To solve this problem, we need to use the relationship between the slope of the liquid surface and 

the acceleration of the tank. The slope of the liquid surface is given by the difference in height divided by 

the horizontal distance.

Step 4: The slope of the liquid surface in a tank accelerating horizontally can be described by the equation: 

𝑠𝑙𝑜𝑝𝑒 =
ℎ1−ℎ2

𝐿
=

𝑎𝑥
𝑔

, where ℎ1 and ℎ2 are the heights of the liquid at two points, 𝐿 is the horizontal 

distance between these points, 𝑎𝑥 is the horizontal acceleration, and 𝑔 is the acceleration due to gravity 

(9.81 𝑚/𝑠2).

Step 5: Calculate the slope using the given heights and horizontal distance: 𝑠𝑙𝑜𝑝𝑒 =
(28 𝑐𝑚− 15 𝑐𝑚)

100 𝑐𝑚
=

13 𝑐𝑚

100 𝑐𝑚
= 0.13.

Step 6: Using the slope and the equation 𝑠𝑙𝑜𝑝𝑒 =
𝑎𝑥
𝑔

, solve for 𝑎𝑥:𝑎𝑥 = 𝑠𝑙𝑜𝑝𝑒 ∙ 𝑔 = 0.13 × 9.81 𝑚/𝑠2 =

1.2753𝑚/𝑠2.

Step 7: Round the calculated acceleration to match the given options: 1.2753 𝑚/𝑠2 rounds to 1.28𝑚/𝑠2.

Step 8: The calculated acceleration matches option (C) 1.28 𝑚/𝑠2.

Step 9: To sum up, the final answer is: C.

Figure 18. Case of AMATH-SFT.
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Figure 19. Comparison to CoT and g1 in MathVista subsets. In
contrast to the declining trend observed in g1, AtomThink outper-
forms the baseline across most subsets.
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